
ECNを用いた TCP Vegasにもとづくウィンドウ型フロー制御方式

大崎博之 村田正幸 潮俊光 宮原秀夫

大阪大学大学院基礎工学研究科
〒 560-8531大阪府豊中市待兼山町 1-3

(Phone) +81-6-6850-6588
(Fax) +81-6-6850-6589

(E-mail) oosaki@ics.es.osaka-u.ac.jp

あらまし ウィンドウ型のフロー制御方式は、フィードバック型の輻輳制御方式であり、現在の TCP/IPネットワー
クにおいて広く利用されている。最近提案された TCP Vegasは、現在使用されている TCP Tahoeや TCP Renoに比
べてより高い性能を示す可能性を持っている。本論文では、TCP Vegasの輻輳回避機構にもとづいた、ウィンドウ型
のフロー制御方式に注目する。まず、制御理論を適用することによって、その安定性解析を行う。次に、シミュレー
ションによって、TCP Vegasから引き継がれた、ウィンドウ型フロー制御方式のいくつかの問題点について検討を行
う。さらに、ECN (Explicit Congestion Notification)を用いることによって、指摘した問題点が解決されることを示す。
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Abstract A window-based flow control mechanism is a sort of feedback-based congestion control mechanisms, and has
been widely used in TCP/IP networks. Recently proposed TCP Vegas is another version of the TCP mechanism and has
potential to achieve much better performance than current TCP Tahoe and Reno. In this paper, we focus on a window-based
flow control mechanism based on a congestion avoidance mechanism of TCP Vegas. We first present a control theoretic
analysis for its stability. We then discuss several drawbacks of the window-based flow control mechanism, being inherited
from TCP Vegas, through simulation experiments. We finally investigate how these drawbacks are solved by incorporating
the ECN (Explicit Congestion Notification) mechanism into the window-based flow control mechanism.
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1 Introduction
The current Internet uses a window-based flow control
mechanism in TCP, as the feedback-based congestion con-
trol mechanism. As an example, a version of TCP mecha-
nism called TCP Reno uses packet losses in the network as
feedback information since packet losses implies conges-
tion occurrence in the network [1]. In short, the congestion
control mechanism of TCP Reno first increases its window
size, and as soon as it detects packet losses in the network,
it reduces its window size. TCP Reno repeats this process
indefinitely during the connection.

Recently another version of TCP called TCP Vegas has
been proposed by Brakmo et. al, which can achieve better
performance than TCP Reno [2]. TCP Vegas has follow-
ing advantages over TCP Reno: (1) a new retransmission
mechanism, (2) an improved congestion avoidance mech-
anism that controls buffer occupancy, and (3) a modified
slow-start mechanism. With these features, it has been re-
ported in [2] that total throughput of TCP Vegas becomes
37–71 % better than TCP Reno, and that the number of re-
transmitted packets of TCP Vegas can be reduced to about
1/5–1/2 of TCP Reno. The performance improvement is
mainly achieved by the congestion avoidance mechanism
of TCP Vegas, which uses a measured round-trip time of
the packet — i.e., duration between the source host sends
the packet and it receives its corresponding ACK (acknowl-
edgment) packet. More specifically, TCP Vegas measures
a round-trip time of a packet, and estimates the number of
queued packets in the router’s buffer. It then controls its
window size to make it constant. There is no need for the
source host to wait for packet losses to know occurrence of
congestion in the network. The window size of TCP Vegas
becomes stabilized when the network is in steady state, and
therefore it can achieve much better throughput than TCP
Reno.

In this paper, we first derive a condition that window sizes
of TCP connections and a queue length (i.e., the number
of packets waiting in the router’s buffer) are stabilized in
steady state, which we will call a stability condition. Our
previous work has shown that the window-based flow con-
trol mechanism works quite efficiently in terms of stability
and transient performance when several control parameters
are chosen appropriately [3]. However, as we will discuss
in Section 3, it has several drawbacks. These drawbacks
are directly inherited from the congestion avoidance mecha-
nism of TCP Vegas. In this paper, we therefore discuss how
the ECN (Explicit Congestion Notification) mechanism can
be incorporated into the window-based flow control mecha-
nism based on TCP Vegas, and demonstrate its effectiveness
through simulation experiments.

2 Analysis of Window-Based Flow Control
Mechanism

In this section, we present our control theoretical analysis of
the window-based flow control mechanism based on TCP
Vegas. Refer to [3] for more detail.

2.1 Analytic Model
We first explain the congestion avoidance mechanism of
TCP Vegas. For detailed explanation, refer to [2]. In TCP
Vegas, each source host maintains � , which is a minimum
round-trip time obtained when the network is not congested.
That is, the minimum round-trip time � corresponds to the
sum of all propagation delays and processing delays at the
routers. Hereafter, we call the minimum round-trip time,
� , the propagation delay for brevity. The source host is al-
lowed to emit packets of its current window-size (denoted
by �) per round-trip time. Therefore, its effective through-
put would be ��� if there is no congestion in the net-
work. Each source host obtains the actual round-trip time
by measuring time duration between a transmission time of
a packet and arrival of its corresponding ACK packet. Let
� be the actual round-trip time measured at the source host,
and � be the number of packets the source host sent in the
previous round-trip time. Its actual throughput is given by
���. TCP Vegas then computes the difference between ex-
pected throughput and actual throughput as

� �
�

�
�

�

�
�

TCP Vegas changes its window size, �, according to rela-
tions among � and two threshold values, � and �. If � is
less than �, the window size is linearly increased by one
packet in the next round-trip time. If � is greater than �, the
window size is linearly decreased by one packet in the next
round-trip time. Otherwise, the window size is unchanged.
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Figure 1: Analytic model.

In this paper, we model the above-mentioned congestion
control mechanism of TCP Vegas as follows. Figure 1 de-
picts our analytic model used throughout this paper. The



number � of source hosts are connected to corresponding
destination hosts through a single bottleneck router. TCP
Vegas changes its window size once every round-trip time.
We therefore consider the system as a discrete-time model,
where each time slot corresponds to the round-trip time.
Note that since the round-trip time changes as the network
status changes, the length of one slot is not fixed in our
model.

Let ���	� be the window size of the source host 


�� � 
 � �� at slot 	. This indicates that the source
host 
 can inject ���	� packets into the network during slot
	. We assume that each source host always has packets to
transmit so that the number ���	� of packets are sent at slot
	. Let ��	� be the number of packets queued in the router’s
buffer at slot 	, and � be the buffer size of the router. At the
router, all packets coming from source hosts are processed
in a FIFO (First-In First-Out) manner; that is, all packets
are first queued in the single buffer, and then transmitted
onto the output link in order. We denote the bandwidth
of the router (i.e., the processing speed of the router or the
bandwidth of the output link) by 
. Note that ���	� (the
window size), ��	� (the number of packets in the router’s
buffer), and � (the buffer size) are represented in units of
packets.

Provided that round-trip times of all connections are
equal, the number of packets in the buffer at slot 	 � �,
��	 � ��, is given by the following equation.

��	 � �� � ������	�

��
���

���	��
 ��	�� 
�� ���

where ��	� denotes the round-trip time at slot 	.
By letting ��	� be the round-trip time observed at the

source host 
 at slot 	, the difference between the expected
throughput and the actual throughput, ��	�, is computed as

��	� �
���	�

�
�

���	�

��	�
� (1)

where � is the round-trip time when there is no waiting
packets in the router’s buffer. The round-trip time, ��	�,
is determined by � and the number of packets in the buffer;
Namely,

��	� � � �
��	�



�

TCP Vegas linearly increases or decreases its window
size based on ��	�. The window size of the source host

 at slot 	 � �, ���	 � ��, is determined as

���	 � �� �

���
��

���	� � � if ��	� � �

���	�� � if ��	� � �

���	� otherwise
� (2)

In the above equation, two threshold values, � and �, are
control parameters at the source host, which specify the

amount of excess packets the source host is permitted to
send in a round-trip time. However, we modify Eq. (2) as
follows.

���	 � �� � ��	����	� � Æ�� � ��	��� 
� (3)

2.2 Stability Analysis
For simplicity, we assume that the initial window sizes of
all source hosts are equal, and that all source hosts change
their window sizes according to Eq. (3). Let ��, ��, and
�� be the fixed points of ��	�, ��	�, and ��	�, respectively.
By using Eqs. (1), (3), and (1), and assuming ��	� � � in
Eq. (3), ��, ��, and �� can be obtained as follows.

�� � �

�

 � ��

�

�
(4)

�� � ��� (5)

�� � � (6)

Since ��	� is given by a non-linear equation, we linearize
it around the fixed point. Let ��	� be the difference from the
fixed point, ��	 � �� is given by

��	 � �� � ���	� (7)

where
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In the system defined by Eqs. (1), (3), and (1), the fixed
point ���� ��� is locally exponentially stable when the roots
of the characteristic equation, �� �� � �� ��, satisfy ���� � �.
That is, the fixed point of the system, ���� ���, is locally
exponentially stable if and only if the following inequalities
hold.

Æ � 
 (8)
Æ������
������� � � � 
 (9)

�Æ
������� � � (10)

3 Simulation Results
As have been mentioned in [4], one drawback of the
window-based flow control mechanism based on TCP Ve-
gas is its incapability to measure the propagation delay ex-
actly. Namely, the congestion avoidance mechanism of TCP
Vegas relies on the assumption that the propagation delay
(i.e., the round-trip time without any queueing delay at the
router) is known in advance. This assumption is valid if
all routers in the network have separate output buffers for
different connections, or if the offered traffic load is low
so that no packets are built up at the router’s buffer. How-
ever, these are rarely the case in real networks. As we will
demonstrate later, inaccurate measurement of the propaga-
tion delay causes unfairness among connections.

Another drawback of the window-based flow control
mechanism based on TCP Vegas is its lack of scalability



regarding the number of connections. Namely, the num-
ber of packets in the router’s buffer in steady state is given
by Eq. (5). It indicates that the number of packets in the
router’s buffer linearly increases as the number of connec-
tions, � , increases. If the number of connections gets ex-
tremely large, the number of packets in the buffer becomes
quite large. So it does not operate correctly unless either
a great amount of buffer is provided or � is set to be quite
small [5].

In what follows, we present several simulation results for
the window-based flow control mechanism based on TCP
Vegas. The simulation model is equivalent to the analytic
model shown in Fig. 1. We have implemented the window-
based flow control mechanism based on TCP Vegas on the
ns (Network Simulator) package. The packet size is fixed at
1,000 bytes, the number of connections, � , is 10, and the
control parameter Æ is changed to 0.4, 2.0, and 3.0. For
other control parameters, following parameters are used:
the router’s bandwidth, 
, is set to 20 packet/ms, the prop-
agation delay, � , is 1 ms, and the control parameter, �, is
3 packet.
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Figure 2: Stable behavior (Æ � ��
, 
 � �
 packet/ms,
� � �
, � � � ms, � � � packet).

In Figs. 2 and 3, we first show simulation results for
Æ � ��
 and Æ � ��
, each of which presents stable and
unstable behavior of the window-based flow control mech-
anism based on TCP Vegas. These figures show dynamical
behaviors of the window size of each connection and the
number of packets in the router’s buffer. One can find that
Fig. 2 (stable behavior) shows the slight oscillation of both
the window size and the number of packets in the router’s
buffer. This is caused by the disturbance in measurement of
the round-trip time (e.g., variation in processing delays at
both TCP and IP layers and timer granularity of the source
host). Thus, a smaller value of Æ would be appropriate for
achieving a better stability. Figure 3 (unstable behavior)
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Figure 3: Unstable behavior (Æ � ��
, 
 � �
 packet/ms,
� � �
, � � � ms, � � � packet).

shows the drastic oscillation of the window size and the
number of packets in the buffer. These figures suggest the
validity of our stability analysis presented in Section 2.2.
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Figure 4: Case of appropriate Æ (Æ � 
�
, 
 �

�
 packet/ms, � � �
, � � � ms, � � � packet).

We next show the case of appropriate value of Æ in Fig. 4,
where Æ is set to 0.4. This figure shows the more stable oper-
ation than Fig. 2. However, it should be noted that fairness
among connections is not fully satisfied. This problem is
caused by the drawback of the window-based flow control
mechanism based on TCP Vegas as have discussed above
— incapability to measure the propagation delay exactly.

This problem becomes more apparent and has a serious
impact when source hosts begin their data transmissions at
different times. In Fig. 5, each connection is activated every
20 ms. This figure shows that the window size of the source
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Figure 5: Case of staggered activation (Æ � 
�
, 
 �

�
 packet/ms, � � �
, � � � ms, � � � packet).

host 10 is stabilized at 22 packets whereas that of the source
host 1 at 6 packets, indicating severe unfairness among con-
nections. To illustrate the cause of this problem clearly, the
estimated propagation delays of all source hosts are shown
in Fig. 6.
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Figure 6: Case of staggered activation (Æ � 
�
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 �
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 packet/ms, � � �
, � � � ms, � � � packet).

One can find that the estimated propagation delays range
from 1 ms to 3.7 ms. The reason of the propagation delay of
the source host 10 being larger than the source host 1 can be
explained as follows. When the source host 1 is activated,
there is no packet in the router’s buffer. So it is able to mea-
sure the propagation delay accurately. However, when the
source host 10 starts, approximately 40 packets are queued
in the router’s buffer. Thus, the propagation delay seen by
the source host 10 is the actual propagation delay plus the
queueing delay for these packets. As our analysis suggests
in Eq. (4), the window size in steady state is a linear func-
tion of the propagation delay. Hence, the difference in the
estimated propagation delay directly affects the difference
in throughput.

4 ECN (Explicit Congestion Notification) in
TCP Vegas

An ECN (Explicit Congestion Notification) is a mechanism
to explicitly notify source hosts of congestion occurrence
in the network. Several variants of ECN mechanisms have
been used in various congestion control mechanisms [4].
For instance, the DECbit congestion avoidance scheme uses
an ECN bit in the header of data packets. In ATM net-
works, an EFCI (Explicit Forward Congestion Indication)
bit in the header of data cells and a CI (Congestion Indi-
cation) bit of RM (Resource Management) cells are used.
ECN mechanisms can be implemented in TCP/IP networks
in several ways. In [6], ICMP Source Quench message is
defined for conveying congestion information from the con-
gested router to source hosts. One-bit use of the DS-byte
in the differentiated service architecture has been proposed
in [7].

According to [7], an example implementation of the ECN
mechanism in TCP/IP networks is as follows. A one-bit in
the header of the data packet is reserved for the ECN bit.
The router in the network uses the ECN bit for notifying
source hosts of its incipient congestion. The router com-
putes the average number of packets in the buffer. If it ex-
ceeds a threshold value (e.g., � % of the buffer capacity),
the router sets the ECN bits of all arriving packets. This
information is then carried to source hosts via correspond-
ing destination hosts as the ACK packet with the ECN bit
set. The source host responds to the ECN message by, for
example, reducing its window size as in the case of packet
losses [4]. The advantage of the ECN mechanism is that
unnecessary packet losses can be prevented if source hosts
respond to the ECN message appropriately. In [4], it has
been reported that the ECN mechanism can avoid unnec-
essary packet delays for low-bandwidth and delay-sensitive
TCP connections. It has also been reported that another ad-
vantage of the ECN mechanism is that the source host can
detect congestion rapidly regardless of coarse granularity of
the TCP’s timer.

The ECN mechanism has a possibility to solve drawbacks
of the window-based flow control mechanism based on TCP
Vegas. When the ECN message is received by the source
host, it implies that the control algorithm works inappropri-
ately. In this case, the source host should throttle its window
size. However, the problem is how much of the window size
should be reduced by receipt of the ECN message. One-bit
information of the ECN message is apparently insufficient
to fine control of the window size. We therefore use the
probabilistic number of ECN messages. More specifically,
the source host counts the number of received ECN mes-
sages, ��, in the last number �� of ACK packets. It then
computes the ratio of the ECN messages at slot 	, ��	�, as

��	� �
��

��

� 
 � ��	� � ��
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Figure 7: Case of staggered activation with ECN mecha-
nism (Æ � 
�
, 
 � �
 packet/ms, � � �
,
� � � ms, � � � packet).

If ��	� is close to 1, it suggests that the network is heav-
ily congested so that the window size should be reduced
quickly. On the contrary, if ��	� is close to 0, the network is
lightly congested so that the window size should be reduced
slightly. Thus, the controller function of the window-based
flow control mechanism given in Eq. (3) is changed as

���	 � �� � ��	����	� � Æ�� � ��	��� ���	���	�� 
��

Note that the objective of the above controller is to minimize
the difference between � and ��	� and to minimize ��	�.
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Figure 8: Case of staggered activation with ECN mecha-
nism (Æ � 
�
, 
 � �
 packet/ms, � � �
,
� � � ms, � � � packet).

We finally demonstrate how the drawbacks of the
window-based flow control mechanism are solved by in-
troduction of the ECN mechanism. Figures 7 and 8 show
simulation results when the ECN mechanism is used. In
this case, the router marks the ECN bit in the packet
header whenever the number of packets in the buffer is over
50 packets. And the source host changes its window size ac-
cording to the above equation. The number of ACK packets,
��, which is used to compute the probabilistic number of
ECN messages, is set to 10. These figures correspond to
Figs. 5 and 6, where the ECN mechanism is not used. It can

be found from Fig. 7 that fairness among connections is dra-
matically improved compared with Fig. 5. Note that perfor-
mance improvement in fairness is mostly resulted from the
probabilistic number of ECN messages, ��	�. Let us con-
sider a situation where a source host happens to gain a much
larger window size than others due to inaccurate estimation
of the propagation delay. In this case, it receives more ECN
messages because of our probabilistic approach. It therefore
decreases its window size more quickly than others. Con-
sequently, unfairness among connection is considerably re-
lieved.

5 Conclusion
In this paper, we have focused on a window-based flow con-
trol mechanism based on the congestion avoidance mecha-
nism of TCP Vegas, and have analyzed its stability using
control theory. We have performed simulation experiments
and have shown its several drawbacks. To overcome these
drawbacks, we have investigated how the ECN mechanism
can be incorporated into the window-based flow control
mechanism. We have also demonstrated its effectiveness
through simulation experiments.
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