
Performance Evaluation of Block Device Layer with Automatic Parallelism
Tuning with Heterogeneous IP-SAN Protocols

Takamichi Nishijima †, Hiroyuki Ohsaki †, Yoshihiro Nomoto ‡ and Makoto Imase †

† Graduate School of Information Science and Technology, Osaka University, Japan
{t-nisijm,oosaki,imase} @ist.osaka-u.ac.jp

‡ NTT Service Integration Laboratories NTT Corporation, Japan
nomoto.yoshihiro@lab.ntt.co.jp

Abstract

In this paper, we evaluate BDL-APT (Block Device
Layer with Automatic Parallelism Tuning) that maximizes
the throughput of IP-SAN protocols in long-fat networks.
BDL-APT parallelizes data transfer using multiple IP-SAN
sessions at a block device layer, and adjusts the number
of active IP-SAN sessions automatically according to net-
work status. We perform quantitatively investigation on
the effectiveness of BDL-APT in realistic network environ-
ments using our BDL-APT implementation with heteroge-
neous IP-SAN protocols (i.e., iSCSI, NBD, and GNBD).
Consequently, we demonstrate that our BDL-APT operates
effectively in long-fat networks and that the performance
with NBD and GNBD protoocls can be further improved
with parameter tuning.

1 Introduction

In recent years, IP-SANs (IP-based Storage Area Net-
works) have been attracting attention for building SANs on
IP networks [12,14]. Because of rapid advancement and de-
velopment of networking technologies, strong requirements
on remote backup using communication network has been
emerging. One of major technologies for remote backup
is SAN (Storage Area Network), which builds a network
of storage devices connected by a communication network.
IP-SANs have been widely used because of its low cost
for building SANs and high compatibility with existing net-
work infrastructures.

Several IP-SAN protocols such as iSCSI (Internet Small
Computer System Interface) [13], NBD (Network Block
Device) [8], GNBD (Global Network Block Device) [2]
and iFCP (Internet Fibre Channel Protocol) [9] have been
widely utilized and deployed for building SANs on IP net-
works. IP-SAN protocols allow interconnection of a remote

diskvia a TCP/IP ewtwork. In this approach, a remote disk
exports a portion of its storage space to a client. The client
handles the remote disk no differently than its local disks –
it runs a local file system that reads and writes data blocks
to the remote disk.

IP-SAN protocols realize connectivity to remote stor-
age devices over a conventional TCP/IP network, but they
still have several issues to be solved — in particular, per-
formance issues [7, 10]. IP-SAN protocols generally uti-
lize TCP (Transmission Control Protocol) for data deliv-
ery, which results in low performance in a long-fat network.
There exist several factors affecting the performance of IP-
SAN protocols in a long-fat network. One of the most sig-
nificant ones is the TCP performance degradation in a long-
fat network [5].

Several solutions for improving the performance of IP-
SAN protocols have been proposed [3, 5, 15]. For instance,
to prevent throughput degradation of iSCSI protocol, solu-
tions utilizing multiple links [15] or parallel TCP connec-
tions [3] have been proposed. In [15], iSCSI throughput
is improved using multiple connections, each of which tra-
verses a different path using multiple LAN ports and ded-
icated routers. Also, iSCSI throughput is improved by ad-
justing the number of parallel TCP connections using the
parallel data transfer feature of iSCSI protocol [3]. On the
contrary, a changes to the TCP congestion control algorithm
for improving fairness and throughput of iSCSI protocol
have been proposed [5].

In our previous work [11], we have proposed BDL-APT
(Block Device Layer with Automatic Parallelism Tuning),
which maximizes the performance of heterogeneous IP-
SAN protocols in a long-fat network. BDL-APT paral-
lelizes data transfer using multiple IP-SAN sessions at a
block device layer, and adjusts the number of active IP-SAN
sessions automatically according to network status. A block
device layer is a layer that receives read/write requests from
an application or a file system, and relays those requests to

1

a storage device. BDL-APT parallelizes data transfer by di-
viding aggregated read/write requests into multiple chunks,
and then transfering a chunk of requests on every IP-SAN
session in parallel. BDL-APT automatically optimizes the
number of IP-SAN sessions based on the measured network
status using our APT mechanism [3, 4].

In [11], the effectiveness of BDL-APT with NBD pro-
tocol has been demonstrated through preliminarily exper-
iments. We have performed preliminary investigation on
the effectiveness of our BDL-APT using our BDL-APT
implementation and network emulator. We have demon-
strated that our BDL-APT operates effectively in long-fat
networks.

In this paper, we evaluate the performance of BDL-APT
with heterogeneous IP-SAN protocols (i.e., iSCSI, NBD,
and GNBD) in a long-fat network. We implemented BDL-
APT as a layer of MD (Multiple Device) driver, which is
one of major software RAID implementations included in
Linux kernel. We perform quantitatively investigation on
the effectiveness of our BDL-APT in realistic network en-
vironments using our BDL-APT implementation.

Through extensive experiments, we show that the effec-
tiveness of BDL-APT with heterogeneous IP-SAN proto-
cols, and that the performance with NBD and GNBD pro-
toocls can be further improved with parameter tuning. Con-
sequently, we demonstrate that our BDL-APT operates ef-
fectively in long-fat networks regardless of IP-SAN proto-
cols. The result show that the performance bottleneck of
BDL-APT is TCP window and incressding the window size
improves the throughput even with NBD, GNBD.

The organization of this paper is as follows. Section 2
summarizes heterogeneous IP-SAN protocols. Our BDL-
APT is described in Section 3. Section 4 is devoted for
performance evaluation of our BDL-APT using our BDL-
APT implementation. Finally, Section 5 summarizes this
paper and discusses future works.

2 IP-SAN Protocols

2.1 iSCSI (Internet Small Computer System In-
terface)

The iSCSI (Internet Small Computer System Interface)
protocol encapsulates a stream of SCSI CDBs (Command
Descriptor Blocks) in IP packets, and it was standardized by
IETF in 2004 [13]. iSCSI simply allows interconnection of
SCSI devices via a TCP/IP network. When SCSI device re-
ceives read/write requests from an application or a file sys-
tem, SCSI device generates SCSI CDBs and transfers these
SCSI CDBs to local SCSI storage. iSCSI initiator provides
SCSI devices operating at users side i.e., acts as clients,
and iSCSI target operates at storage side and perform stor-
age access. When iSCSI initiator reveives read/write re-

quests, iSCSI initiator generates SCSI CDBs and transfers
these SCSI CDBs to iSCSI target using TCP connections.
When iSCSI target receives SCSI CDBs from iSCSI initia-
tor, iSCSI target transfers these SCSI CDBs to local SCSI
strage. Hence, using the iSCSI protocol, applications and
file systems can extend their reachability to remote storage
devices as well as local ones.

It has been known that iSCSI performance is signifi-
cantly degraded when the end-to-end delay (i.e., the de-
lay between iSCSI initiator and target) is large [1, 3, 6, 7].
There have been several researches on performance evalu-
ation of the iSCSI protocol in long-fat networks [1, 6, 7].
In [1, 6, 7], the performance of the iSCSI protocol is eval-
uated using experiment [6], simulation [7] or mathematical
analysis [1]. Consequently, it has been shown that the iSCSI
throughput is significantly degraded when the end-to-end
delay (i.e., the delay between iSCSI initiator and target) is
large. In [3], iSCSI throughput is improved by adjusting the
number of parallel TCP connections using the parallel data
transfer feature of iSCSI protocol regardless of link delay.

2.2 NBD (Network Block Device)

The NBD (Network Block Device) protocol is a light-
weight IP-SAN protocol for accessing a remote block de-
vice through a TCP/IP network, and it was initially devel-
opped by Pavel Machek in 1997 [8]. NBD simply allows in-
terconnection of Block devices via a TCP/IP network. NBD
offers an access model that simulates a block device, such
as a locale strage, on the locale client, but connects across
the network to a remote server that provides the real physi-
cal storage. Even though the actual access requests and data
blocks are communicated on the network, NBD layer hides
all the details and the client simply uses the virtual devices
as if it were a local block device.

It has been known that the NBD performance is sensitive
to the end-to-end delay [11]. There have been a research
on performance evaluation of the NBD protocol in long-
fat networks [11]. In [11], the performance of the NBD
protocol is evaluated using experiment. Consequently, it
has been shown that the NBD goodput is improved by the
adjustment of the number of parallel TCP connections.

2.3 GNBD (Global Network Block Device)

The GNBD (Global Network Block Device) protocol is
another light-weight IP-SAN protocol for accessing a re-
mote block device through a TCP/IP network, and it was
developped in the University of Minnesota as a part of GFS
(Global File System) [2]. GNBD simply allows intercon-
nection of Block devices via a TCP/IP network. GNBD
adds the functionality of resource exclusion control to NBD
intending for the use especially in clusters. The large differ-

application

BDL-APT

block device layer

storage device
IP-SAN protocol

TCP

storage access
request

divided access
request

measure
goodput

optimize # of active
IP-SAN sessions

storage device
IP-SAN protocol

TCP

parallel TCP connections

parallel data transfer

IP-SAN storage

IP network

Figure 1: BDL-APT overview; BDL-APT parallelizes data
transfer using multiple IP-SAN sessions at a block
device layer, and adjusts the number of active IP-
SAN sessions automatically according to network
status.

ence between NBD and GNBD is that GNBD alllows mul-
tilpe clients to across the same block device concurrently
while NBD driver only allows a single client at a time. To-
day, it is maintained by Red Hat. Inc. and availabe to ev-
eryone under an open source lisence.

3 BDL-APT (Block Device Layer with Auto-
matic Parallelism Tuning)

3.1 Overview

BDL-APT (Block Device Layer with Automatic Paral-
lelism Tuning) automatically maximizes the performance
of heterogeneous IP-SAN protocols in long-fat networks.
BDL-APT parallelizes data transfer using multiple IP-SAN
sessions at a block device layer, and adjusts the number of
active IP-SAN sessions automatically according to network
status. BDL-APT is a mechanism that operates as a block
device layer at an IP-SAN initiator (i.e., client) (see Fig. 1).
BDL-APT parallelizes data transfer by dividing aggregated
read/write requests into multiple chunks, and then transfer-
ing a chunk of requests on every IP-SAN session in parallel.
BDL-APT automatically optimizes the number of active IP-
SAN sessions based on the measured network status using
our parallelism tuning mechanism APT [4], which is based
on a numerical computation algorithm called Golden Sec-
tion Search method.

3.2 Building blocks

BDL-APT is composed of three main building blocks
for parallelizing data transfer, for monitoring data trans-
fer throughput and delay, and for optimizing the number
of multiple IP-SAN sessions.

• Parallelizing data transfer

BDL-APT realizes parallel data transfer by establish-
ing multiple IP-SAN sessions to a single storage.
When BDL-APT receives read/write requests (it is
hereafter called block I/O request) from an application
or a file system, BDL-APT splits those block I/O re-
quests into multiple chunks. BDL-APT generates mul-
tiple block I/O requests for each chunk. BDL-APT
parallelizes data transfer by assigning those generated
block I/O requests to multiple IP-SAN sessions.

• Optimizing the number of multiple IP-SAN sessions

BDL-APT adjusts the number of parallel TCP connec-
tions by adjusting the number of active IP-SAN ses-
sions. An IP-SAN protocol utilizing TCP for data de-
livery establishes at least one TCP connection per an
IP-SAN session. Thus, it is possible to adjust the num-
ber of parallel TCP connections by adjusting the num-
ber of active IP-SAN sessions. BDL-APT maintains
multiple IP-SAN sessions. BDL-APT determines the
required number of parallel TCP connections, and ad-
justs the number of active IP-SAN sessions. By assign-
ing generated block I/O requests to a subset of estab-
lished IP-SAN sessions, BDL-APT adjusts the num-
ber of active IP-SAN sessions used for parallel data
transfer. BDL-APT determines the required number
of IP-SAN sessions using our parallelism tuning APT
mechanism [4].

• Monitoring data transfer goodput

BDL-APT measures the goodput for every chunk
transfer at a block device layer during parallel data
transfer. When BDL-APT assigns generated block
I/O requests to multiple IP-SAN sessions, BDL-APT
records the size of each data transfer request. BDL-
APT calculates the goodput of an IP-SAN protocol
from the chunk size (i.e., the total size of block I/O
requests consisting of a chunk) and the time required
to transfer all block I/O requests in a chunk.

3.3 Implementation

We implemented BDL-APT in the MD (Multiple De-
vice) driver, which is one of popular software RAID im-
plementations included in the Linux kernel. The MD driver
provides virtual devices that are created from one or more

independent underlying devices. This array of devices often
contains redundancy, and hence the acronym RAID such as
RAID0, RAID1 and RAID5. MD layer is a block device
layer which is created above the layer of device drivers.

The BDL-APT module in the MD driver is derived from
the RAID-0 module with adding several functions required
for BDL-APT: parallelizing data transfer, optimizing the
number of multiple IP-SAN sessions, and monitoring data
transfer goodput. Parallelizing data transfer is implemented
by just using the function of RAID0, but BDL-APT changes
the number of active IP-SAN sessions according to network
status. Optimizing the number of multiple IP-SAN ses-
sions is implemented by using our parallelism tuning mech-
anism APT [3, 4]. Monitoring data transfer goodput is im-
plemented by calculating from the total data size of Block
I/O requests that transfer was completed at a uniform pace,
which was a parameter of BDL-APT.

BDL-APT utilizes multiple IP-SAN sessions for improv-
ing the IP-SAN performance, so the maximum number of
IP-SAN sessions in the MD driver and IP-SAN protocols
(i.e., iSCSI, NBD, and GNBD) is increased. We modified
the definition in header files of MD driver to increase the
number of IP-SAN sessions which can be maintained. To
establish multiple IP-SAN session using iSCSI, multiple
iSCSI interfaces are generated. The number of the iSCSI
session able to be established concurrently is configured at
iSCSI target, we made it able to establish 128 sessions at
most modifying configuration. We also increased the num-
ber of NBD sessions able to be established concurrently by
modifying the header file of NBD protocol.

4 Experiment

4.1 Experiment design

We evaluate the performance of BDL-APT with hetero-
geneous IP-SAN protocols (i.e., iSCSI, NBD, and GNBD)
in a long-fat network. To show the effectiveness of BDL-
APT in realistic network, we conducted the experiment of
our BDL-APT with iSCSI, NBD, and GNBD varying band-
width and latency. It is known that the performance of both
iSCSI and NBD drop in long-fat network. Though neither
NBD and GNBD has the functionality of parallel TCP con-
nections, we show that the performance can be improved by
the adjustment of the number of parallel TCP connections
using BDL-APT.

The network configuration used in our experiments com-
posed of IP-SAN client and storage, and the network em-
ulator (see Fig. 2). We transfered data from an IP-SAN
client to an IP-SAN storage. We used the same computers
with an Intel Xenon 3.06 [GHz] processor with 2 [GByte]
memory for the IP-SAN client, IP-SAN target and the net-
work emulator. For the IP-SAN client, we used Open iSCSI

divided data

1 [Gbit/s]
1 [ms]

IP-SAN client

data

receiving
 host

network
emulator

delay: 10 [ms]
bandwidth: 1 [Gbit/s]

dummynet IP-SAN server

sending
 host

1 [Gbit/s]
1 [ms]

Figure 2: Network configuration userd in experiments: IP-
SAN client and storage, and network emulator

Table 1. Parameter configuration used in ex-
periments

Bandwidth of network emulator 1,000 [Mbit/s]
Delay of network emulator 10 [ms]
TCP socket buffer size 1024 [Kbyte]
Initial number of NBD sessions N0 [4] 1
Multiplicative increase factor α [4] 2
Target value of chunk transfer time ∆ [4] 10 [s]
Transfer time 300 [s]
Device size 512 [MB]

2.6-870, GNBD client 1.03.00 and NBD server 2.8.7 run-
ning on Debian GNU/Linux 3.1 (ethc)(Linux kernel 2.6.18).
For the IP-SAN storage, we used the iSCSI target 0.4.17,
GNBD server 2.03.09 and NBD server 2.9.11 running on
Debian GNU/Linux 3.1 (lenny)(Linux kernel 2.6.26). We
used FreeBSD 6.4 and dummynet for the network emulator.
Unless explicitly stated, parameters shown in Tab. 1are used
in the following experiments.

4.2 Effect of network bandwidth

First, the goodput of heterogeneous IP-SAN protocols
(i.e., iSCSI, NBD, and GNBD) with BDL-APT in steady
state is measured by changing the bottleneck link band-
width (i.e., the bandwidth throttling at the network emu-
lator) (see Fig. 3). We conducted three experiments and
measured the average and 95% confidence interval of IP-
SAN goodput. Figure 3 shows the IP-SAN goodput (i.e.,
aggregated IP-SAN goodput of all active IP-SAN sessions)
when the bandwidth of the network emulator is changed as
100–1000 [Mbit/s].

One can find from Fig. 3 that BDL-APT fully utilizes the
bottleneck link bandwidth regardless of IP-SAN protocols.
Figure, 3 shows that BDL-APT can maximize the through-
put of all of iSCSI, NBD, and GNBD regardress of band-

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700 800 900 1000A
gg

re
ga

te
d

IP
-S

A
N

 g
oo

dp
ut

 [M
bi

t/s
]

Link bandwidth [Mbps]

BDL-APT with iSCSI
BDL-APT with GNBD

BDL-APT with NBD

Figure 3: Bottleneck link bandwidth vs. goodput of IP-
SAN protocols with BDL-APT; BDL-APT fully
utilizes the bottleneck link bandwidth regardless
of IP-SAN protocols.

width. Thus, it can be said that BDL-APT can fully utilize
the bandwidth under the low latency environment no matter
what the IP-SAN protocols.

4.3 Effect of network delay

Second, the goodput of heterogeneous IP-SAN protocols
(i.e., iSCSI, NBD, and GNBD) with BDL-APT in steady
state is measured by changing the network delay (i.e., the
delay at the network emulator) (see Fig. 4). We conducted
10 experiments and measured the average and 95% confi-
dence interval of IP-SAN goodput. Figure 4 shows the IP-
SAN goodput when the delay of the network emulator is
changed as 10–100 [ms].

One can find from Fig. 4, 5 that BDL-APT fully utilizes
the bottleneck link delay regardless of IP-SAN protocols.
Fig.4 shows that BDL-APT maximizes iSCSI throughput
regardless of latency. On the other hand, the figure shows
that the throughput of NBD and GNBD drops when the la-
tency is high. Our further investigation identified TCP win-
dow as the performance bottoleneck of NBD and GNBD.
Fig. 5 presents the result of BDL-APT’s throughput im-
provement of NBD and GNBD under the TCP window-
size of 16 [Mbyte]. NBD performs well regardless of la-
tency, and the throughput of GNBD is maximized when
the latency is under 40 [ms]. When the latency is under
40 [ms], the throughput of GNBD outperforms that of NBD,
but when the latency is larger than 40 [ms], the throughput
slightly drops, which can be caused by inadequate size of
TCP window. These results show that BDL-APT can max-

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100A
gg

re
ga

te
d

IP
-S

A
N

 g
oo

dp
ut

 [M
bi

t/s
]

Link delay [ms]

BDL-APT with NBD
BDL-APT with GNBD

BDL-APT with iSCSI (not 16M)

Figure 4: Bottleneck link delay vs. goodput of IP-SAN
protocols with BDL-APT; BDL-APT maximizes
iSCSI throughput regardless of latency and im-
proves the throughput of GNBD outperforms that
of NBD, but when the latency is larger than
40 [ms], the throughput slightly drops, which can
be caused by inadequate size of TCP window.

imaze throughput regardless of the IP-SAN protocols and
the bandwidth of bottoleneck link, however the size of TCP
window must be adjusted for each IP-SAN protocols.

5 Conclusion

In this paper, we have evaluated BDL-APT (Block De-
vice Layer with Automatic Parallelism Tuning) that maxi-
mizes the throughput of IP-SAN protocols in long-fat net-
works.

We have performed quantitatively investigation on the
effectiveness of BDL-APT in realistic network environ-
ments using our BDL-APT implementation. Consequently,
we have demonstrated that our BDL-APT operates effec-
tively in long-fat networks. we have demonstrated that our
BDL-APT operates effectively in long-fat networks regard-
less of IP-SAN protocols and that the performance with
NBD and GNBD protoocls can be further improved with
parameter tuning.

As future work,
we are planning to experiments on real network

(SINET3) and

References

[1] C. M. Gauger, M. Kohn, S. Gunreben, D. Sass, and S. G.
Perez. Modeling and performance evaluation of iSCSI stor-

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100A
gg

re
ga

te
d

IP
-S

A
N

 g
oo

dp
ut

 [M
bi

t/s
]

Link delay [ms]

BDL-APT with NBD
BDL-APT with GNBD

Figure 5: Bottleneck link delay vs. goodput of IP-SAN pro-
tocols with BDL-APT when TCP window size is
16 [Mbyte]; BDL-APT fully utilizes the bottle-
neck link bandwidth regardless of IP-SAN proto-
cols when TCP window size is large.

age area networks over TCP/IP-based MAN and WAN net-
works. Proceeding of the Second International conference
on Broadband Networks(BROADNETS 2005), pages 915–
923, Oct. 2005.

[2] GNBD Project Page. http://sourceware.org/
cluster/gnbd/.

[3] F. Inoue, H. Ohsaki, Y. Nomoto, and M. Imase. On maximiz-
ing iSCSI throughput using multiple connections with auto-
matic parallelism tuning. in Proceedings of the 5th IEEE In-
ternational Workshop on Storage Network Architecture and
Parallel I/Os (SNAPI 2008), pages 11–16, Sept. 2008.

[4] T. Ito, H. Ohsaki, and M. Imase. GridFTP-APT: Auto-
matic parallelism tuning mechanism for data transfer proto-
col GridFTP. In Proceedings of 6th IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid2006),
pages 454–461, May 2006.

[5] B. K. Kancherla, G. M. Narayan, and K. Gopinath. Perfor-
mance evaluation of multiple TCP connections in iSCSI. In
Proceedings of the 24th IEEE Conference on Mass Storage
Systems and Technologies, pages 239–244. IEEE Computer
Society, Sept. 2007.

[6] Y. Lu and D. H. C. Du. Performance study of iSCSI-
based storage subsystems. IEEE Communications Maga-
zine, 41(8):76–82, Aug. 2003.

[7] Y. Lu, N. Farrukh, and D. H. C. Du. Simulation study of
iSCSI-based storage system. In Proceedings of 12th NASA
Goddard & 21st IEEE Conference of Mass Storage Systems
and Technologies (MSST 2004), pages 101–110, Apr. 2004.

[8] P. Machekz. Network Block Device. http://nbd.
sourceforge.net.

[9] C. Monia et al. iFCP - a protocol for internet fibre chan-
nel storage networking. Request for Comments (RFC) 4172,
Sept. 2005.

[10] W. Ng et al. Obtaining high performance for storage out-
sourcing. In Proceedings of the 1st USENIX Conference on
File and Storage Technologies, pages 145–158, Jan. 2002.

[11] T. Nishijima, F. Inoue, H. Ohsaki, Y. Nomoto, and M. Imase.
On maximizing IP-SAN throughput over TCP connections
with automatic parallelism tuning for long-fat networks. In
Proceedings of the Third Workshop on Middleware Archi-
tecture in the Internet (MidArc 2009), pages 251–254, July
2009.

[12] P. Sarkar and K. Voruganti. IP storage: The challenge ahead.
In in Proceedings of the IEEE Symposium on Mass Storage
Systems, pages 35–42, 2002.

[13] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and
E. Zeidner. Internet small computer systems interface
(iSCSI). Request for Comments (RFC) 3720, Apr. 2004.

[14] P. Wang et al. IP SAN – from iSCSI to IP-addressable eth-
ernet disks. in Proceedings of the 20 th IEEE Conference
on Mass storage Systems and Technologies, page 189, Apr.
2003.

[15] Q. K. Yang. On performance of parallel iSCSI protocol for
networked storage systems. In Proceeding of the 20th Inter-
national Conference on Advanced Information Networking
and Applications (AINA 2006), volume 1, pages 629–636,
Apr. 2006.

