
GridFTP-APT: Automatic Parallelism Tuning Mechanism
for Data Transfer Protocol GridFTP

Takeshi Ito, Hiroyuki Ohsaki and Makoto Imase
Graduate School of Information Science and Technology

Osaka University
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
{t-itou, oosaki, imase}@ist.osaka-u.ac.jp

Abstract

GridFTP has been used as a data transfer protocol to
effectively transfer a large volume of data in Grid com-
puting. GridFTP supports a feature called parallel data
transfer that improves throughput by establishing multi-
ple TCP connections in parallel. However, for achieving
high GridFTP throughput, the number of TCP connections
should be optimized based on the network status. In this pa-
per, we propose an automatic parallelism tuning mechanism
called GridFTP-APT (GridFTP with Automatic Parallelism
Tuning) that adjusts the number of parallel TCP connec-
tions only using information measurable in the Grid mid-
dleware. Through simulation experiments, we demonstrate
that GridFTP-APT significantly improves the performance
of GridFTP in various network environments.

1. Introduction

GridFTP has been proposed as a protocol to effectively
transfer a large volume of data in Grid computing [16, 4,
15]. GridFTP is designed to solve the existing TCP prob-
lems and has various additional features for this purpose.

These features include, for instance, parallel data transfer
using multiple TCP connections and automatic negotiation
of TCP socket buffer size. It is known that the effectiveness
of GridFTP depends largely on control parameter configu-
ration such as the number of parallel TCP connections [7,
14]. However, examination has not been conducted suffi-
ciently so far regarding how to configure GridFTP control
parameters. For example, although a command is defined
in the GridFTP protocol to specify the number of parallel
TCP connections between GridFTP server and client, it is
not specified at all in the GridFTP protocol how to deter-
mine the number of parallel TCP connections.

There have been several studies concerning the configu-

ration method of the GridFTP control parameters. In [17],
the authors propose a method to determine the required TCP
socket buffer size for GridFTP. By measuring the round-trip
time and the bandwidth between GridFTP server and client,
this method calculates the bandwidth-delay product of the
network, and determines the TCP socket buffer size. How-
ever, since the GridFTP protocol needs to be modified when
using the method proposed in [17], interoperability with ex-
isting GridFTP servers is unrealizable. Moreover, in [17],
the authors focus only on the TCP socket buffer size, and
do not consider the number of parallel TCP connections.

In [7], the throughput of parallel TCP connections is de-
rived using a simple analytic model. However, the analytic
approach in [7] does not model degradation of throughput
when the number of parallel TCP connections is too large.

Moreover, in [9], the optimal control parameters of
GridFTP is derived using mathematical analysis. In [9], the
authors clarify the configuration method of GridFTP control
parameters (i.e., the number of parallel TCP connections
and the TCP socket buffer size) by deriving the GridFTP
goodput in steady state. However, to apply the result in [9]
to a real network, the round-trip time and the bottleneck link
bandwidth of a network must be known in advance. How-
ever, it is not discussed in [9] how the round-trip time and
the bottleneck link bandwidth are measured by GridFTP.

Moreover, in [10], the authors propose an automatic pa-
rameter configuration mechanism for GridFTP. The pro-
posed method transfers a file as a series of blocks called
chunk, and measures network status (i.e., the round-trip
time and GridFTP goodput) for every chunk transfer. Based
on the analytic result in [9] and measurement results, the
number of parallel TCP connections is adjusted. In [10],
three operation modes are proposed for heuristically adjust-
ing the number of parallel TCP connections. However, there
is a problem that GridFTP goodput does not improve so
much in some conditions — for instance, in a network with
a large bandwidth-delay product [10].

1

In this paper, we therefore propose a GridFTP-APT
(GridFTP with Automatic Parallelism Tuning) mechanism
that automatically adjusts the number of parallel TCP con-
nections of GridFTP. GridFTP-APT operates on GridFTP
clients by utilizing only information measurable in the Grid
middleware. GridFTP-APT utilizes the fact that GridFTP
goodput is a convex function for the number of parallel TCP
connections. GridFTP-APT searches for the optimal num-
ber of parallel TCP connections using a numerical compu-
tation algorithm for a maximization problem. We evalu-
ate the performance of GridFTP-APT through simulation
experiments. Consequently, we show that GridFTP with
GridFTP-APT can realize high throughput in various net-
work environments.

The structure of this paper is as follows. First, Section 2
provides a general description of GridFTP as well as the
explanation on parallel data transfer, one of the notable fea-
tures of GridFTP. Section 3 discusses design principles of
an automatic parallelism tuning mechanism for GridFTP.
We then explain the basic ideas and algorithm of our pro-
posed GridFTP-APT. Section 4 demonstrates the effective-
ness of GridFTP-APT through simulation experiments. Fi-
nally, Section 5 summarizes the paper and mentions future
tasks.

2. GridFTP

GridFTP is a data transfer protocol, which is designed
to effectively transfer a large volume of data in Grid com-
puting. GridFTP is an extension of FTP (File Transfer Pro-
tocol) [12, 6, 8] that has been widely used, and is currently
under standardization in GGF (The Global Grid Forum) [1].
GridFTP, which uses TCP as its transport layer communica-
tion protocol, is designed to solve several problems of TCP.
For example, besides the features of the existing FTP, it has
additional features such as automatic negotiation of TCP
socket buffer size, parallel data transfer, third-party control
of file transfer, partial file transfer, security, and reliable data
transfer [4].

Most of these specific features of GridFTP are realized
by a new transfer mode called extended block mode [4].
Currently, GridFTP server and client software conform-
ing to GridFTP version 1 (GridFTP v1) is included in the
Globus Toolkit [2], which is the de facto standard mid-
dleware for Grid computing. However, in this specific
GridFTP implementation, the feature of the automatic ne-
gotiation of TCP socket buffer size is not implemented, so
a user must manually specify the number of parallel TCP
connections for parallel data transfer. In addition, GGF has
been discussing the problems with GridFTP v1 and also un-
dertaking a study on GridFTP v2 (version 2) as a solution to
these problems [11]. Additional features have been incor-
porated in GridFTP v2. These features relax several limita-

GridFTP
client

GridFTP
server

GridFTP
serverTCP connection

TCP socket
buffer

partial data
transfer

parallel file
transfer

parallelism

TCP socket
buffer size file

file

Grid network

Figure 1. Parallel data transfer in GridFTP

tions of the extended block mode in GridFTP v1, such that
data transfer is restricted to a single direction and unable to
open/close data channels in the midst of the data transfer.
However, how to configure the GridFTP control parameters
regarding parallel TCP connections has not been addressed
even in the discussion on GridFTP v2.

Multiple TCP connections can be established in parallel
in GridFTP using OPTS RETR command (Fig. 1). With
this feature, a single file can be transferred from a single
server through multiple TCP connections. Higher through-
put can be expected by aggregating multiple TCP connec-
tions in comparison to using a single TCP connection [14].

This can be explained by the following reasons: (1) By
aggregating multiple TCP connections, larger bandwidth
can be gained in the TCP congestion avoidance phase than
those gained by other competing TCP connections. This
situation results from the fact that, in the TCP congestion
avoidance phase, the AIMD window flow control is be-
ing executed, and therefore aggregated multiple TCP con-
nections can transfer data more advantageously through the
network with a smaller packet loss probability. (2) By ag-
gregating multiple TCP connections, the total TCP socket
buffer size available to the file transfer increases. Aggre-
gation of N TCP connections can utilize as N times TCP
socket buffer size as that of a single TCP connection. (3)
By aggregating multiple TCP connections, ramp-up time of
the transfer rate in the TCP slow-start phase is shortened. In
the slow-start phase, the congestion window doubles every
round-trip time. For this reason, through the aggregation of
N TCP connections the speed of the transfer rate increase
becomes N times as fast as that of a TCP connection.

However, the throughput drops if the number of aggre-
gate TCP connections, N , becomes too large since this may
cause the following situations: (1) The window size per
TCP connection becomes smaller, so TCP timeout would

2

frequently occur. (2) The overhead required for the server
to process TCP protocol stack would increase. Therefore,
the optimal number of TCP connections, N , should be de-
termined based on the network status. Nevertheless, how
to optimize the number of parallel TCP connections, N , in
GridFTP has not sufficiently been studied and still remains
as an open issue.

3. Automatic Parallelism Tuning Mechanism
for GridFTP

3.1. Design Principles

First, we explain the basic principles for designing an
automatic parallelism tuning mechanism for GridFTP.

It is extremely important to provide compatibility with
existing GridFTP servers in designing an automatic par-
allelism tuning mechanism for GridFTP. GridFTP is im-
plemented in the Globus Toolkit and has been spreading
rapidly in recent years. Since a number of GridFTP servers
have already been in operation, it is preferable to realize
the automatic parallelism tuning mechanism at the side of
GridFTP client. Additionally, it is also favorable to realize
the automatic parallelism tuning mechanism without chang-
ing the existing GridFTP protocol so as to enable intercon-
nection with existing GridFTP servers. If the automatic par-
allelism tuning is executed on the side of GridFTP client, it
will be difficult to realize the automatic parallelism tuning
during the third party transfer. Nonetheless, we believe that
this would not be so problematic because most of the trans-
fers are executed between GridFTP servers and clients.

Next, it is desirable that the automatic parallelism tuning
mechanism for GridFTP can easily be installed in Grid com-
puting environment. Generally, Grid computing is char-
acterized by the heterogeneity of computers and networks
constituting Grid. Therefore, the automatic parallelism tun-
ing mechanism needs to operate in various computer envi-
ronments as well as various network environments. For this
reason, it is preferable for the automatic parallelism tuning
mechanism to be realized in the Grid middleware layer. In
other words, it is important for the automatic parallelism
tuning mechanism to avoid using any function specific to
certain operating systems or network devices on the com-
puters.

3.2. Basic Ideas of GridFTP-APT

In [9], the GridFTP goodput G in steady state is approx-
imately derived as

G � min
(

N W

R
,

N (1− p∗)
2 R

(
−3 +

√
6 + 21 p∗√

p∗

))
, (1)

p∗ �
(
−2 +

2 B R

N
+

2
3

(
B R

N

)2
)−1

, (2)

where N is the number of parallel TCP connections, W is
the TCP socket buffer size for each TCP connection, B is
the bottleneck link bandwidth, and R is the round-trip time
of the TCP connections.

Equation (1) indicates that the GridFTP goodput G is a
convex function for the number N of parallel TCP connec-
tions. Thus, the number of parallel TCP connections, N ,
should be selected so as to maximize the GridFTP goodput
G.

In this paper, we propose a GridFTP-APT mechanism
that automatically adjusts the number of parallel TCP con-
nections. GridFTP-APT utilizes the fact that the GridFTP
goodput is a convex function for the number of parallel
TCP connections. The basic idea of GridFTP-APT is that
a GridFTP client divides a file to transfer into blocks called
chunk, and adjusts the number of parallel TCP connections
at the end of every chunk transfer. Chunk-based transfer
can be realized using the extended block mode of GridFTP.
More specifically, GridFTP-APT measures the goodput at
every chunk transfer. According to measurement results,
GridFTP-APT adjusts the number of parallel TCP connec-
tions so that the GridFTP goodput is maximized using a
numerical computation algorithm for a maximization prob-
lem.

GridFTP-APT uses the GSS (Golden Section Search)
algorithm, one of numerical computation algorithms for a
maximization problem [13]. GSS algorithm is a technique
of numerically searching for x that maximizes f(x), when
f(x) is a convex function in the range of [x l : xr] and
derivatives of f(x) are unknown. GridFTP-APT numeri-
cally searches for the optimal number of parallel TCP con-
nections that maximizes the GridFTP goodput using GSS
algorithm.

The GridFTP goodput of each chunk transfer can be cal-
culated from the chunk size and its transfer time, which can
be measured by transferring the chunk in the extended block
mode [4]. Specifically, a chunk is transferred by ERET or
ESTO command in the extended block mode of GridFTP
while measuring its response time, T . Since the response to
ERET or ESTO command is returned when the chunk trans-
fer is completed [4], the GridFTP goodput can be calculated
as G = X/T from the chunk size, X , and the response time,
T .

3

3.3. Adjusting the Number of Parallel TCP
Connections

First, for applying the GSS algorithm, GridFTP-APT
searches for a range of the number of parallel TCP connec-
tions called bracket, in which the GridFTP goodput takes a
convex form.

GridFTP-APT starts from a small number of parallel
TCP connections, and multiplicatively increases the num-
ber of parallel TCP connections at every chunk transfer un-
til GridFTP goodput decreases. GridFTP-APT determines
the bracket — the range of the number of parallel TCP
connections covering the optimal value that maximizes the
GridFTP goodput.

In what follows, N is the number of parallel TCP con-
nections used for a chunk transfer, G(N) the GridFTP
goodput measured at the chunk transfer, and N−k the num-
ber of parallel TCP connections used for the k-th last chunk
transfer.

GridFTP-APT searches for the bracket as follows.

1. Initialize the number of parallel TCP connections:

N ← N0,

where N0 is the initial number of parallel TCP connec-
tions.

2. Transfer a chunk while measuring the GridFTP good-
put G(N).

3. If the following inequality is satisfied, determine the
bracket as (N−2, N−1, N) and terminate the algo-
rithm.

G(N) < G(N−1)

Otherwise, proceed to the step 4.

4. Increase the number of parallel TCP connections as
follows, and return to the step 2.

N ← α×N,

where α(> 1) is a control parameter. Note that, since
the number of parallel TCP connections is a positive
integer, the integer closest to N in the above equation
is used as the number of parallel TCP connections.

Using the GSS algorithm, GridFTP-APT searches for
the number of parallel TCP connections that maximizes the
GridFTP goodput within the bracket (l, m, r) during suc-
ceeding chunk transfers.

GridFTP-APT searches for the optimal number N of
parallel TCP connections as follows.

1. Update the number N of parallel TCP connections:

N ←
{

l + (m− l)ν if m− l > r −m
m + (r −m)ν otherwise

(3)

where ν is the golden ratio (= (3−√5)/2) [13]. Note
that, since the number of parallel TCP connections is
a positive integer, the integer closest to N in the above
equation is used as the number of parallel TCP con-
nections.

2. Transfer a chunk while measuring the GridFTP good-
put G(N).

3. If the following inequality is satisfied, proceed to the
step 4.

G(N) > G(m)

If the above inequality is not satisfied, change the
bracket as follows and return to the step 1.

(l, m, r)←
{

(l, m, N) if m < N
(N, m, r) otherwise

4. Change the bracket as follows, and return to the step 1.

(l, m, r)←
{

(m, N, r) if m < N
(l, N, m) otherwise

(4)

3.4. Determining Chunk Size

It is an important problem to appropriately determine the
size of a chunk in every chunk transfer.

For accelerating search of the optimal number of parallel
TCP connections, it is desirable to keep the chunk size as
small as possible. With a small chunk size, since each step
in the algorithm described above is completed more shortly,
it is expected that the number of parallel TCP connections
converges faster to the optimal value.

However, if the chunk size is too small, the goodput of
each TCP connection cannot be measured accurately be-
cause of TCP’s characteristics [5]. Consequently, since the
number of parallel TCP connections does not converge to
the optimal value, the GridFTP goodput cannot be maxi-
mized. For this reason, it is necessary to increase the chunk
size so that the TCP goodput can be measured accurately.

The chunk size required for accurately measuring the
TCP goodput is affected by the network bandwidth. Hence,
it is necessary to determine the chunk size according to the
network bandwidth. However, of course, we cannot know
the network bandwidth before the chunk transfer. Since the
GridFTP-APT uses the extended block mode of GridFTP
for chunk transfers, there is a limitation that the block size
must be specified before starting the block transfer.

4

For solving this problem, GridFTP-APT predicts the
GridFTP goodput of the next chunk transfer, and dynam-
ically configures the chunk size so that the chunk transfer
time becomes as fixed as possible. Specifically, GridFTP-
APT determines the chunk size X as follows.

When searching for the bracket, GridFTP-APT pre-
dicts the GridFTP goodput of the next chunk transfer as
G(N−1)×G(N−1)/G(N−2) from the ratio of the last two
chunk transfers, and determine the chunk size as

X = G(N−1)
G(N−1)
G(N−2)

∆,

where ∆ is a control parameter, which is the target value of
the chunk transfer time.

Note that, at the time of the first chunk transfer, since the
GridFTP goodput G(N−1) and G(N−2) are unknown, the
chunk size X is determined as follows:

X =
N0 W

R
∆,

where W is the TCP socket buffer size and R is the round-
trip time. The round-trip time is measured from response
times of commands on the GridFTP control channel. Note
that, at the time of the second chunk transfer, the GridFTP
goodput G(N−2) is unknown. So the chunk size X is de-
termined as follows.

X = α G(N−1)∆

When GridFTP-APT searches for the optimal number
of parallel TCP connections with the GSS algorithm, the
GridFTP goodput of the next chunk transfer is predicted by
the interpolation of two samples of the GridFTP goodput in
the bracket (l, m, r). Namely, the chunk size is determined
as follows.

X =
{

((1− ξ)G(l) + ξ G(m))∆ if N < m
((1− ξ)G(m) + ξ G(r))∆ otherwise

where

ξ =
{ N−l

m−l if N < m
N−m
r−m otherwise

3.5. Example of GridFTP-APT Operation

In what follows, we illustrate an example operation of
GridFTP-APT. Figure 2 shows an example operation of
GridFTP-APT when searching for a bracket with N0 = 1
and α = 2. The number k shown in a circle indicates the
k-th chunk transfer.

GridFTP-APT searches for a bracket (i.e., the range of
the number of parallel TCP connections covering the opti-
mal value). First, GridFTP-APT initialize the number N

 0 1 2 3 4 5 6 7 8 9 10

G
rid

F
T

P
 g

oo
dp

ut

Number of parallel TCP connections

 1

 2

 3 4

x2

x2

x2

bracket
(2, 4, 8)

Figure 2. Example of GridFTP-APT operation
when searching for a bracket

of parallel TCP connections to N0 (= 1). GridFTP-APT
multiplicatively increases the number of parallel TCP con-
nections as 1 → 2 → 4 → 8 at every chunk transfer until
the GridFTP goodput starts to decrease. Since the GridFTP
goodput decreases when the number N of parallel TCP con-
nections changes as 4→ 8, the bracket is determined as (2,
4, 8).

Next, Fig. 3 shows an example operation of GridFTP-
APT when searching for the optimal number of parallel
TCP connections. In Fig. 3, the number k on an arrow indi-
cates that the bracket is changed at k-th chunk transfer.

The GSS algorithm is applied to the bracket (2, 4, 8) dur-
ing chunk transfers, and the number of parallel TCP con-
nections is adjusted for maximizing the GridFTP goodput.
Since the bracket is (2, 4, 8), the number of parallel TCP
connections at the 5-th chunk transfer N is determined as
N = 6 from Eq. (3). The GridFTP goodput in the 5-th
chunk transfer is G(6), and since G(4) < G(6) is satisfied,
the bracket is updated as (4, 6, 8) from Eq. (4). Hereafter,
in a similar way, GridFTP-APT changes the number of par-
allel TCP connections N as 6 → 7 → 5, and updates the
bracket as (4, 6, 8)→ (4, 6, 7)→ (5, 6, 7). Finally, when
the bracket is (5, 6, 7), the number of parallel TCP con-
nections is fixed at N = 6, which maximizes the GridFTP
goodput.

4. Simulation

In this section, we quantitatively evaluate the effective-
ness of GridFTP-APT through simulation experiments.

Figure 4 shows the network model used in simulation.
We performed simulation by changing the propagation de-

5

 0 1 2 3 4 5 6 7 8 9 10

G
rid

F
T

P
 g

oo
dp

ut

Number of parallel TCP connections

 2

 3 4
 55

 6

6

 7

7

 8

Figure 3. Example of GridFTP-APT operation
when searching for the optimal number of
TCP connections

file chunk

GridFTP
client

GridFTP
server

control channel

sending
host

bottleneck link
100 [Mbit/s]

τ[ms]

router buffer size
 L [packet]

TCP socket buffer
 W [Kbyte]

router buffer size
 L [packet]

RED
router

receiving
host

RED
router

TCP socket buffer
 W [Kbyte]

data channel # of TCP connections

N

Figure 4. Network model used in simulation

lay of the bottleneck link in Fig. 4. In this network model,
a GridFTP server and client are connected via two RED
routers. Data transfer was continuously performed from the
GridFTP client to the GridFTP server. Moreover, for clari-
fying the fundamental characteristics of GridFTP-APT, we
performed simulation in an environment where background
traffic does not exist. Note that ns-2 simulator [3] with our
GridFTP-APT implementation was used for simulation.

Table 1 shows the parameter configuration used in simu-
lation. Unless explicitly stated, parameters shown in Tab. 1
are used in the following simulations.

The evolution of the number of parallel TCP connections
of GridFTP-APT when the propagation delay of the bottle-
neck link is 10 [ms] is shown in Fig. 5. This figure shows
that the number of parallel TCP connections of GridFTP-
APT converges to N = 13 at approximately t = 15 [s].
In this case, the bracket was determined at approximately
t = 10 [s]. After approximately 5 [s], the number of paral-
lel TCP connections was optimized.

Table 1. Parameter configuration used in sim-
ulation

Bottleneck link bandwidth 100 [Mbit/s]
Propagation delay of the bottleneck link 10 or 20 [ms]
Buffer size of RED router 100 [packet]
Control parameter of RED router maxth 75
Control parameter of RED router minth 25
Control parameter of RED router maxp 0.1
Control parameter of RED router wq 0.002
TCP socket buffer size 64 [Kbyte]
TCP packet size 1000 [byte]
Initial number of parallel TCP connections N0 4
GridFTP-APT control parameter α 2
Target value of chunk transfer time ∆ 1.0 [s]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

N
um

be
r

of
 T

C
P

 c
on

ne
ct

io
ns

Time [s]

GridFTP-APT

Figure 5. The number of TCP connections in
GridFTP-APT for τ = 10 [ms]

The GridFTP-APT goodput in this scenario is shown
in Fig. 6. For comparison purposes, GridFTP goodput
in steady state when fixing the number of parallel TCP
connections at 1, 4, 8, 16, and 32 are also plotted in
the figure. First, one can find that the optimal number
of parallel TCP connections seems to exist between 8–
16 from the GridFTP goodput with the fixed number of
parallel TCP connections. GridFTP-APT reaches good-
put of approximately 80 [Mbit/s] at approximately t =
10 [s]. After approximately 5 [s], the GridFTP goodput
converges to 85.3 [Mbit/s]. Note that, since the buffer size
of RED routers is small (i.e., 100 [packet]) in our simula-
tions, the maximum goodput was approximately 85 [Mbit/s]
even with the optimal number of parallel TCP connec-
tions. Namely, this indicates that GridFTP-APT can utilize
the network resource quite effectively after approximately

6

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

G
rid

F
T

P
 g

oo
dp

ut
 [M

bi
t/s

]

Time [s]

GridFTP-APT
GridFTP with 1 TCP
GridFTP with 4 TCP
GridFTP with 8 TCP

GridFTP with 16 TCP
GridFTP with 32 TCP

Figure 6. Evolution of goodput in GridFTP-
APT for τ = 10 [ms]

15 [s] from starting the transfer.
Evolutions of the number of parallel TCP connections

and the GridFTP goodput when the propagation delay of
the bottleneck link is 20 [ms] are shown in Figs. 7 and 8,
respectively.

Figure 7 shows that the number of parallel TCP connec-
tions converges at approximately t = 25 [s]. Since the
propagation delay of the bottleneck link is larger than the
previous case (Fig. 7), the convergence time of the num-
ber of parallel TCP connections becomes larger. One can
find that the optimal number of parallel TCP connections is
N = 25, which is significantly different from that in the
previous case (N = 13).

Figure 8 shows that the GridFTP-APT can realize a high
goodput by appropriately adjusting the number of parallel
TCP connections. Figure 8 shows that the GridFTP good-
put degrades temporarily until GridFTP-APT determines
the bracket. However, Fig. 8 also shows that GridFTP-APT
finally achieves high goodput by adjusting the number of
parallel TCP connections during chunk transfers. Note that,
in this simulation, due to small buffer of RED routers and
a large propagation delay, the maximum GridFTP good-
put was approximately 67.5 [Mbit/s] even with the optimal
number of parallel TCP connections. Namely, this indicates
that GridFTP-APT can utilize the network resource quite
effectively regardless of the propagation delay of the bottle-
neck link.

5. Conclusion

In this paper, we have proposed GridFTP-APT, an au-
tomatic parallelism tuning mechanism for GridFTP, mainly
focusing on the parallel data transfer feature for GridFTP.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

N
um

be
r

of
 T

C
P

 c
on

ne
ct

io
ns

Time [s]

GridFTP-APT

Figure 7. The number of TCP connections in
GridFTP-APT for τ = 20 [ms]

GridFTP-APT utilizes the fact that GridFTP goodput is a
convex function for the number of parallel TCP connec-
tions. GridFTP-APT searches for the optimal number of
parallel TCP connections using the GSS algorithm, one
of numerical computation algorithms for a maximization
problem. In this paper, we have shown that GridFTP with
GridFTP-APT realizes high throughput in several network
environments.

As future work, we are planning to do performance eval-
uation of GridFTP-APT in more general network environ-
ments. In particular, we need performance evaluation of
GridFTP-APT in a network with background traffic and/or
multiple GridFTP-APT sessions. Moreover, it would be
valuable to implement our proposed GridFTP-APT and to
demonstrate its effectiveness in a real network.

Acknowledgments

We would like to express our appreciation to Prof.
Masayuki Murata for joining meaningful discussions. This
work is supported by the NAREGI (National Research Grid
Initiative) Project from the Ministry of Education, Culture,
Sports, Science and Technology, Japan. This work is also
supported by a Grant-in-Aid for Scientific Research on Pri-
ority Areas (No. 16016261) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan.

References

[1] Global Grid Forum. http://www.ggf.org/.
[2] Globus Toolkit. available at http://www.globus.

org/.

7

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

G
rid

F
T

P
 g

oo
dp

ut
 [M

bi
t/s

]

Time [s]

GridFTP-APT
GridFTP with 1 TCP
GridFTP with 4 TCP
GridFTP with 8 TCP

GridFTP with 16 TCP
GridFTP with 32 TCP

Figure 8. Evolution of GridFTP goodput for
τ = 20 [ms]

[3] The network simulator – ns2. available at http://www.
isi.edu/nsnam/ns/.

[4] W. Allcock et al. GridFTP: Protocol extensions to
FTP for the Grid. GGF Document Series GFD.20,
Apr. 2003. Also available as http://www.ggf.org/
documents/GFD.20.pdf.

[5] N. Ehsan and M. Liu. Analysis of TCP transient behavior
and its effect on file transfer latency. In Proceedings of IEEE
International Conference on Communications (ICC2003),
volume 26, pages 1806–1811, May 2003.

[6] R. Elz and P. Hethmon. FTP security extensions. Request
for Comments (RFC) 2228, Oct. 1997.

[7] T. J. Hacker, B. D. Athey, and B. Noble. The end-to-end
performance effects of parallel TCP sockets on a lossy wide-
area network. In Proceedings of the 16th IEEE-CS/ACM In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), pages 434–443, Apr. 2002.

[8] P. Hethmon and R. Elz. Feature negotiation mechanism
for the file transfer protocol. Request for Comments (RFC)
2389, Aug. 1998.

[9] T. Ito, H. Ohsaki, and M. Imase. On parameter tuning of data
transfer protocol GridFTP in wide-area Grid computing. In
Proceedings of Second International Workshop on Networks
for Grid Applications (GridNets 2005), pages 415–421, Oct.
2005.

[10] T. Ito, H. Ohsaki, and M. Imase. Automatic parameter con-
figuration mechanism for data transfer protocol GridFTP. In
Proceedings of the 2006 International Symposium on Appli-
cations and the Internet (SAINT 2006), pages 32–38, Jan.
2006.

[11] I. Mandrichenko, W. Allcock, and T. Perelmutov. GridFTP
v2 protocol description. GGF Document Series GFD.47,
May 2005. Also available as http://www.ggf.org/
documents/GFD.47.pdf.

[12] J. Postel and J. Reynolds. File transfer protocol (FTP). Re-
quest for Comments (RFC) 959, Oct. 1985.

[13] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C: The Art of Scientific Com-
puting. Cambridge University Press, 1992.

[14] L. Qiu, Y. Zhang, and S. Keshav. On individual and aggre-
gate TCP performance. In Proceedings of Internetl Confer-
ence on Network Protocols, pages 203–212, Oct. 1999.

[15] The Globus Project. GridFTP update January 2002, 2002.
available at http://www.globus.org/datagrid/
deliverables/GridFTP-Overview-200201.
pdf.

[16] The Globus Project. GridFTP: universal data trans-
fer for the Grid. White Paper, Sept. 2003. avail-
able at http://www.globus.org/datagrid/
deliverables/C2WPdraft3.pdf.

[17] S. Thulasidasan, W. Feng, and M. K. Gardner. Optimizing
GridFTP through dynamic right-sizing. In Proceedings of
IEEE International Symposium on High Performance Dis-
tributed Computing, pages 14–23, June 2003.

8

