
Scalable IP-VPN Flow Control Mechanism
Supporting Arbitrary Fairness Criteria

— Part 2: Simulation and Implementation —
Osamu Honda, Hiroyuki Ohsaki, Makoto Imase

Graduate School of Information Science and Technology
Osaka University, Osaka, Japan

E-mail: o-honda@ist.osaka-u.ac.jp
oosaki@ist.osaka-u.ac.jp
imase@ist.osaka-u.ac.jp

Junichi Murayama, Kazuhiro Matsuda
NTT Information Sharing Platform Laboratories

NTT Corporation, Tokyo, Japan
Email: murayama.junichi@lab.ntt.co.jp

matsuda.kazuhiro@lab.ntt.co.jp

Abstract— In recent years, IP-based virtual private networks
(IP-VPNs), which provide a virtual privately owned network over
an IP network, have attracted attention. With existing IP-VPNs,
however, there is a serious problem that fairness among IP-
VPN customers is not satisfied. In our previous work, we have
proposed an IP-VPN fairness control mechanism called I2VFC
(Inter- and Intra-VPN Fairness Control) that realizes fairness
among IP-VPN customers. In this paper, we quantitatively show
effectiveness of our I2VFC using simulation experiments and
prototype system experiments. Focusing on inter-VPN fairness,
intra-VPN fairness, and scalability, we extensively analyze the
performance of I2VFC. Consequently, we show that I2VFC can
realize both inter- and intra-VPN fairness under diverse control
parameter configurations, indicating robustness and parameter
insensitivity of our I2VFC. We also show that I2VFC has a
practically sufficient scalability in terms of the transfer speed and
the number of VPNs accommodated. For instance, measurement
results using our prototype system show that with a modern
desktop computer, I2VFC can support approximately 1.6 [Gbit/s]
bandwidth and 1,300 numbers of VPNs.

I. I NTRODUCTION

In recent years, IP-based virtual private networks (IP-
VPNs) [1-3], which provide a virtual privately owned network
over an IP network, have attracted attention. A virtual private
network can be constructed on an IP network at a lower cost
than with conventional dedicated lines.

However, there is a serious problem that existing IP-VPNs
cannot guarantee fairness among IP-VPN customers. This is
because the IP network is a best-effort network, so the IP-VPN
constructed on it is also a best-effort network. In our previous
work [4], we have proposed I2VFC (Inter- and Intra-VPN Fair-
ness Control) to achieve fair IP-VPN services within a layer
3 provider-provisioned VPN (L3-PPVPN) framework [5].

In the literature, there have been several approaches for
achieving fairness among IP-VPN flows [6-9]. However, these
approaches require a specific queue management mechanism
be implemented at all core routers in the network. On the
contrary, our I2VFC does not require such a specific queue
management mechanism; I2VFC simply requires modification
to Provider Edge (PE) routers.

In this paper, we quantitatively show effectiveness of our
I2VFC using simulation experiments and prototype systems
experiments. Focusing on inter- and intra-VPN fairness, we an-
alyze the performance of I2VFC with simulation experiments.
We show that I2VFC can realize both inter- and intra-VPN
fairness under diverse control parameter configurations. We
also show that I2VFC can realize arbitrary fairness including
Max-Min fairness [10] in a network with multiple bottleneck
links. We also show that although I2VFC does not perform
active control for realizing intra-VPN fairness, the congestion
point of the entire network is dispersed, so that the fairness
of TCP flows operating between end hosts (i.e., intra-VPN
fairness) is improved. In prototype system experiments, we
show the validity of simulation experiments, and measure
the CPU time and the amount of memories required for
performing I2VFC control. Consequently, we show that our
I2VFC has a practically sufficient scalability in terms of the
transfer speed and the number of VPNs accommodated.

The structure of this paper is as follows. First, Section II
explains overview of I2VFC with its key ideas. Section III
quantitatively evaluates how inter- and intra-VPN fairness
are achieved with the proposed I2VFC through simulation
experiments. Section IV describes experimental results using
an I2VFC prototype system for examining scalability in terms
of the transfer speed and the number of VPNs. Finally,
Section V concludes the paper and discusses future works.

II. I2VFC (I NTER- AND INTRA-VPN FAIRNESSCONTROL)

This section explains an overview of our proposed inter- and
intra-VPN fairness control (I2VFC), which achieves fair IP-
VPN services within a layer 3 provider-provisioned VPN (L3-
PPVPN) framework [5, 2]. Refer to [4] for details of I2VFC.

We show overview of I2VFC in Fig. 1. The core of I2VFC
is an AIMD window flow control that operates among IP-VPN
service provider’s edge (PE) routers [2]. Specifically, multiple
flows accommodated in the same VPN are aggregated into a
single VPN flow, and stored in a logical queue for each VPN at
ingress PE routers. The round-trip time and the packet loss rate

AIMD window
flow control

end host provider edge router customer edge router

end-to-end flow
control (e.g. TCP)

fair share of bottleneck link

among VPN flows

VPN flow

Fig. 1: Overview of I2VFC (Inter- and Intra-VPN Fairness
Control)

of each VPN flow are periodically measured by exchanging
management packets between ingress and egress PE routers.

Based on this information, the ingress PE router performs
the AIMD window flow control [11] for adjusting the number
of packets injected into the core network. Only the window
flow control is performed between PE routers; i.e., neither
retransmission control nor error recovery is performed. Note
that VPN traffic is transferred bi-directionally, so window
flow control is performed for VPN flows both upwards and
downwards.

AIMD window flow control for each VPN is performed
at PE routers, so inter-VPN fairness is achieved. Namely,
parameters of AIMD window flow control (additive increase
factor a and multiplicative decrease factorb [11]) are set
appropriately based on the measured round-trip time and
packet loss rate, and fairness criteria specified by the IP-VPN
service provider. Thus, I2VFC can achieve arbitrary fairness
criteria among VPN customers (inter-VPN fairness); i.e., the
ratio of VPN flow throughputs can be arbitrary controlled by
the service provider.

Intra-VPN fairness is achieved by simply relying on TCP’s
congestion control mechanism operating between end hosts.
Namely, I2VFC itself does not perform any control for achiev-
ing intra-VPN fairness. The congestion control mechanism
of TCP achieves sufficient intra-VPN fairness because flows
accommodated in the same VPN have the same round-trip
time and the same packet loss rate [4].

In I2VFC, AIMD window flow control operates between
PE routers, and TCP window flow control operates between
end hosts. That is, two independent feedback-based controls
operate simultaneously between PE routers and between end
hosts. As have been pointed out in TCP over ABR studies [12],
there might be a risk of performance degradation due to mutual
interference of different feedback-based controls. I2VFC’s
window flow control avoids such interference of feedback

Bottleneck link

TCP flow

R -1

VPN flow -1

TCP source
TCP sink

Router

(non PE router)
Ingress-PE router
Egress-PE router

I

R -2I

R -5I

VPN -1

R -1O

R -2O

L-5

R -5O

VPN - 2

VPN - 5

R B

L-2

L-1

UDP source
UDP sink

Fig. 2: Network topology with a single bottleneck link

controls by operating at much larger timescale than TCP’s
one.

III. SIMULATION

In this section, we evaluate the effectiveness of I2VFC
through simulation experiments. Evaluation is conducted by
focusing, in particular, on inter- and intra-VPN fairness.

A weighted fairness indexF defined by the following
equation [8, 13] is used as a performance metric for inter-
VPN fairness and intra-VPN fairness.

F =
(
∑N

i
xi

ri
)2

N
∑N

i (xi

ri
)2

(1)

xi is the throughput of thei-th flow, ri is the weight of thei-th
flow (taking 1.0 when assessing intra-VPN fairness), andN
is the number of flows in the network. The weighted fairness
index F takes a value between 0 and 1, withF = 1 when
fairness is completely satisfied and withF close to 0 when
fairness is not satisfied.

I2VFC is implemented in OPNET simulator version
9.1A [14]. The simulation time is 50 seconds. For a given pa-
rameter set, simulation is repeated 10 times, and the average of
the weighted fairness indexF is calculated. In all simulations,
the 95% confidence interval of the weighted fairness indexF
is within 2% of its average, so the confidence interval is not
shown in the following results.

A. Case of a Single Bottleneck Link

First, we investigate inter- and intra-VPN fairness in a
network with a single bottleneck link (Fig. 2). Data transfer
is performed continuously using multiple TCP flows from a
sending host to its receiving host starting att = 0 [s]. The
weight of each VPN and the propagation delay of each link
used in simulations are shown in Tabs. I and II, respectively.

UDP traffic is generated on the bottleneck link as back-
ground traffic. The average arrival rate of background traffic

TABLE I: Weight of each VPN flow (case of a single bottle-
neck link)

VPN flow weight (ri)
VPN 1 1.0
VPN 2 2.0
VPN 3 2.0
VPN 4 3.0
VPN 5 4.0

TABLE II: Propagation delay of each link (case of a single
bottleneck link)

link propagation delay [s]
L-1 0.050
L-2 0.025
L-3 0.075
L-4 0.050
L-5 0.025

is 30% of the bottleneck link bandwidth and the packet length
is fixed at 1,500 [Byte]. The inter-packet time is exponentially
distributed. Unless otherwise noted, the following parameters
are used in simulations; the number of VPN flows is 5, the
bottleneck link bandwidth is 50 [Mbit/s], the router buffer size
is 50 [packet], the number of TCP flows in each VPN flow is
30, the management packet interval (i.e., the number of packets
sent between two consecutive management packets) is∆ = 4,
and the propagation delay of links exceptlinkL− 1 ∼ L− 5
is very small (i.e.,5.06 × 10−6 [s]).

First, the effect of the additive increase factora and the
multiplicative decrease factorb on inter-VPN fairness is inves-
tigated. TCP’s congestion avoidance phase operating on end
hosts corresponds to AIMD window flow control witha = 1.0
and b = 0.5. Hence, it is expected that I2VFC’s window
flow control operates satisfactorily with parameter settings of
a < 1.0 andb < 0.5 [4].

Simulation results are shown for the additive increase factor
a = 0.01, 0.1, and1 and for the multiplicative decrease factor
b being set as in Tab. I so that fairness can be realized.
Figures 3 and 4 show evolutions of the fairness index for
inter-VPN fairness when the multiplicative decrease factor for
VPN flow 1 is respectively set tob = 0.1 and b = 0.25.
Values of the multiplicative decrease factorb for other VPN
flows are chosen based on Eq. (1) according to the measured
packet loss rate and round-trip time [4]. In these figures,
throughput of the VPN flow (VPN throughput) every 1 [s]
and the weighted fairness indexF are plotted. For comparison
purpose, simulation results without I2VFC are also plotted. We
note that in all simulations, utilization of the bottleneck link
is almost 100 [%].

These figures show that inter-VPN fairness can be achieved
with an extremely high accuracy (F > 0.9) regardless of set-
tings of additive increase factora and multiplicative decrease
factor b. In addition, focusing on variations of inter-VPN
fairness index, one can find that the transient performance
is not good when the additive increase factora is 1.0. One
can also find that transient performance is not affected when

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30 35 40 45

In
te

r-V
PN

 fa
irn

es
s i

nd
ex

 F

Time [s]

a=0.01
a=0.1
a=1.0

w/o I2VFC

Fig. 3: Evolution of inter-VPN fairness index (multiplicative
decrease factorb = 0.1 for VPN flow 1)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30 35 40 45

In
te

r-V
PN

 fa
irn

es
s i

nd
ex

 F

Time [s]

a=0.01
a=0.1
a=1.0

w/o I2VFC

Fig. 4: Evolution of inter-VPN fairness index (multiplicative
decrease factorb = 0.25 for VPN flow 1)

a ≤ 0.5. This is probably because I2VFC’s window flow
control with a = 1.0 interferes with TCP’s window flow
control operating on end hosts. In addition, comparison of
Figs. 3 and 4 shows that settings of the multiplicative decrease
factor b have no substantial effect on inter-VPN fairness.

Based on these observations, we conclude that I2VFC’s
window flow control achieves satisfactory inter-VPN fairness
with parameter settings ofa < 1.0 andb < 0.5.

Next, the effect of the additive increase factora and the
multiplicative decrease factorb on intra-VPN fairness is in-
vestigated. There exist 4 VPN flows, and the additive increase
factor is changed toa = 0.1, 0.5, 1, and5. The multiplicative
decrease factor is changed tob = 0.1, 0.5, and 0.75. The
fairness indexF for intra-VPN fairness is shown in Figs. 5
and 6. Figure 5 is the result with two TCP flows in each VPN
flow. On the contrary, Fig. 6 is the result with 10 TCP flows in
each VPN flow. For comparison purposes, simulation results
without I2VFC are also included in all figures. The results
show that the fairness index is 0.748 for two TCP flows in
each VPN flow, and 0.604 for 10 TCP flows in each VPN
flow.

Figures 5 and 6 also show that intra-VPN fairness is
substantially affected by values of the additive increase factor
a and multiplicative decrease factorb. One can find that intra-
VPN fairness improves in particular when values ofa andb are

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1 1

In
tra

-V
PN

 fa
irn

es
s i

nd
ex

 F

Additive increase factor (a)

b=0.1
b=0.5

b=0.75
w/o I2VFC

Fig. 5: Weighted fairness index for intra-VPN fairness (two
TCP connections in each VPN flow)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.1 1

In
tra

-V
PN

 fa
irn

es
s i

nd
ex

 F

Additive increase factor (a)

b=0.1
b=0.5

b=0.75
w/o I2VFC

Fig. 6: Weighted fairness index for intra-VPN fairness (10
TCP connections in each VPN flow)

small. Such phenomenon can be explained by the interference
between I2VFC’s window flow control and TCP’s window
flow control; i.e., when values ofa and b are large (e.g.,
a ≥ 1 and b ≥ 0.5), I2VFC’s window flow control interferes
with TCP’s window congestion control. On the contrary, when
values ofa and b are small, two congestion controls works
almost independently, leading fair bandwidth allocation to
TCP flows in each VPN flow.

Note that in Figs. 5 and 6, intra-VPN fairness is improved
by introducing I2VFC’s window flow control regardless of
settings of the additive increase factora and multiplicative
decrease factorb. For example, intra-VPN fairness is improved
from 0.748 to 0.815 fora = 5.0 andb = 0.75 in Fig. 5 even
when frequency of I2VFC’s window flow control is compa-
rable to that of TCP’s window flow control. Such fairness
improvement can be explained by dispersion of congestion at
the bottleneck link; i.e., by introducing I2VFC’s window flow
control between ingress and egress routers, the bottleneck link
is less congested than the case without the I2VFC’s control.
Therefore, packets from TCP connections in each VPN flow
are less likely to be dropped, leading more stable behavior
(e.g., less timeouts) of TCP connections.

Based on these observations, we conclude that introducing
I2VFC’s window flow control improves intra-VPN fairness
regardless of the settings of the additive increase factora and

Bottleneck link -1

VPN -1

VPN - 2 VPN - 3 VPN - 4

Bottleneck link -2 Bottleneck link -3

ftp source
ftp sink

Router (non PE router)Ingress-PE router
Egress-PE router

R -1I

R -2
R -3I R -4I

R -1O

R -4OR -3OR -2

R -1B
R -1B R -1B

I
O

Fig. 7: Network topology with multiple bottleneck links

TABLE III: Weight of each VPN flow (case of multiple bot-
tleneck links)

B3 [Mbit/s]
VPN flow 10 20 30

VPN 1 1.0 1.0 1.0
VPN 2 3.0 3.0 3.0
VPN 3 1.0 1.0 1.0
VPN 4 1.0 3.0 5.0

multiplicative decrease factorb. This is a surprising result;
even though I2VFC does not perform any active control
to improve intra-VPN fairness, it disperses the congestion
and consequently results in much better fairness among TCP
connections than the case without I2VFC’sinter-VPN fairness
control.

B. Case of Multiple Bottleneck Links

Next, inter-VPN fairness in a generic network with multiple
bottleneck links (Fig. 7) is investigated. We show that Max-
Min fairness can be achieved with our I2VFC in a network
with multiple bottleneck links.

In the following simulations, we set the bandwidth of link 1
to 20 [Mbit/s] and that of link 2 to 10 [Mbit/s] while changing
the bandwidth of link 3 (B3) to 10, 20, and 30 [Mbit/s].
The weight of each VPN is calculated to satisfy the Max-
Min fairness as shown in Tab. III. The router’s buffer size
is 200 [packet], there exist 30 TCP flows in each VPN
flow, and propagation delays of all links are very small (i.e.,
5.06 × 10−6 [s]).

The additive increase factor for all VPN flows is equally
set to a = 0.5. The multiplicative decrease factor for VPN
flow 1 is set tob = 0.01. Values of the multiplicative decrease
factor b for other VPN flows are configured according to the
measured packet loss rate and round-trip time [4]. Evolution
of the fairness index for inter-VPN fairness is plotted in Fig. 8.

Figure 8 shows that in all cases inter-VPN fairness can
be achieved with an extremely high accuracy (i.e.,F >

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 5 10 15 20 25 30 35 40 45

In
te

r-V
PN

 fa
irn

es
s i

nd
ex

 F

Time [s]

B3=10 [Mbit/s]
B3=20 [Mbit/s]
B3=30 [Mbit/s]

Fig. 8: Evolution of weighted fairness index for inter-VPN
fairness (case of multiple bottleneck links)

0.95) regardless of the bandwidth of the link 3. Namely,
the proposed I2VFC achieves arbitrary fairness by setting the
additive increase and multiplicative decrease factor,a and b,
based on the packet loss rate and round-trip time, even when
each VPN flow traverses different bottleneck links.

We then focus on how quickly inter-VPN fairness con-
verges. Figure 8 shows that the fairness index for inter-VPN
fairness converges after 10 [s] since all VPN flows start their
data transmissions regardless of the bandwidth of the link 3.
Since the round-trip time of longest VPN flow (VPN flow 1) is
0.312 [s] when the bandwidth of the link 3 is 10 [Mbit/s], one
can find that good transient performance (i.e., convergence in
approximately 16 times of the round-trip time) is realized.

Based on these observations, we conclude that using I2VFC
realizes arbitrary fairness including the Max-Min fairness even
in a network with multiple bottleneck links. Also, we conclude
that inter-VPN fairness has good transient performance.

IV. EXPERIMENTS WITH PROTOTYPESYSTEM

A. Prototype System Overview

Using C programming language, an I2VFC prototype sys-
tem has been implemented as an application running in the
user space (Fig. 9). An ingress PE router consists of three pro-
cesses to respectively process packet sending, packet receiving,
and window flow control. An egress PE router consists of
two types of processes to respectively process packet sending
and packet receiving. The libpcap version 0.6.2 is used for
packet receiving, and packet sending is implemented using raw
sockets. Inter-process communication is implemented using
shared memory.

The topology of the network used in measurements with
the prototype system is shown in Fig. 10. The following
equipments/softwares are used:

• Sending host and receiving host
A computer running a Linux operating system is used,
and multiple TCP flows are generated by a TCP bench-
mark software [15]. Every VPN is identified by the
destination port number.

• Ingress PE router and egress PE router
A computer running a Linux operating system is used.

Ingress PE router Egress PE router

Packet
receiving
process

Window flow
control
process

Packet
sending
process

Packet
sending
process

Packet
receiving
process

Shared memory

Common queue

VPN logical queue Shared memory

Common queue

Fig. 9: I2VFC prototype system overview

Source
host

Ingress
PE router

Network
emulator

Egress
PE router

Destination
host

IP-VPN fairness control

VPN flow

Fig. 10: Network topology used in experiments with prototype
system

• Network emulator
A network emulator is used to simulate various network
environments; the bandwidth and delay for the bottle-
neck link are changed. A computer running a FreeBSD
operating system is used, and dummynet [16] is used as a
network emulator. With dummynet, the bandwidth, delay,
and buffer size can be configured.

Specifications for respective equipments/softwares (e.g.,
CPU, memory, type of OS) are shown in Tab. IV. Unless
otherwise noted, parameter settings shown in Tab. V are used
in experiments.

B. Evaluation of Inter- and Intra-VPN Fairness

In experiments using the prototype system, there are 4 VPN
flows; there is one TCP flow in VPN flow 1 and VPN flow
3, and two TCP flows in VPN flow 2 and VPN flow 4. Data
transfer is initiated from VPN flow 1 to VPN flow 4 in order
every 5 [s], and the VPN throughput and TCP throughput are
measured.

TABLE V: Parameter configuration in experiments with pro-
totype system

Number of VPN flows 4
Number of TCP flows comprising VPN flows 1, 2
Weight of VPN flows 1.0
Buffer size for each VPN flow 128 [packet]
Additive increase factora 0.1
Multiplicative decrease factorb 0.1
Interval of management packets∆ 4
Bandwidth of the network emulator 50 [Mbit/s]
Delay of the network emulator 2 [ms]
Buffer size of the network emulator 50 [packet]

TABLE IV: Equipment/software specifications used in experiments with prototype system

CPU memory OS NIC driver
source host Celeron 1.06 GHz 384 MByte Linux 2.4.22 e100-2.3.18

destination host Celeron 1.06 GHz 384 MByte Linux 2.4.22 e100-2.3.18
ingress PE router Pentium4 1.70 GHz 256 MByte Linux 2.4.20 e1000-4.4.19
egress PE router Celeron 2.00 GHz 512 MByte Linux 2.4.20 epic100-1.11, 8139to-0.9.24
network emulator Pentium4 2.26 GHz 256 MByte FreeBSD 5.2.1 fxp, tx

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

VP
N

th
ro

ug
hp

ut
 [M

bit
/s]

Time [s]

VPN 1
VPN 2
VPN 3
VPN 4

Fig. 11: Evolution of instantaneous VPN throughput

To examine in detail the behavior of each VPN flow,
evolution of the VPN throughput is measured instead of the
weighted fairness indexF . Evolution of the VPN throughput
is shown in Fig. 11. Variation of the instantaneous VPN
throughput for every 2 [s] is plotted in this figure. TCP
throughput in each VPN flow is also shown in Fig. 11. The
figure shows that inter-VPN fairness is achieved; i.e., VPN
throughput is almost equal at approximatelyt = 25 [s]
regardless of the number of TCP flows comprising each VPN
flow. Comparison with simulation results (see Fig. 3) shows
good agreement in terms of the convergence time of VPN
throughput.

Based on results in prototype system experiments (Fig. 11),
the weighted fairness indexF for intra-VPN fairness is
calculated. The result is that the weighted fairness index for
VPN flow 2 isF = 0.99; the weighted fairness index for VPN
flow 4 is F = 0.99. From these results, we find that intra-VPN
fairness is also achieved. These values roughly agree with the
simulation results (F = 0.92 in Fig. 5).

These observations confirm that inter- and intra-VPN fair-
ness are achieved in the prototype system. Moreover, we
also confirm that simulation results and measurement results
with the prototype system mostly agree. Thus, the validity of
simulation experiments and measurement experiments using
the prototype system is confirmed.

C. Evaluation of Scalability

To evaluate I2VFC scalability, the CPU time and the amount
of memories used by the ingress and egress PE routers are
measured using the prototype system. For the CPU time,
the running time of each module is measured using a C
compiler profiler. Specifically, data transfer is lasted for 180 [s]

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100
CP

U
pr

oc
es

sin
g

tim
e

[s]

Network emulator bandwidth [Mbit/s]

Ingress PE router
Egress PE router

Fig. 12: Relation between network emulator bandwidth
and total CPU processing time consumed by
ingress/egress PE router

after all VPN flows started their data transmission, and the
total amount of CPU time is measured. I2VFC does not
perform dynamic memory allocation; i.e., it performs only
static memory allocation. Thus, memory required by I2VFC
is calculated as the total memory statically allocated by the
I2VFC prototype.

To evaluate scalability regarding bandwidth and the number
of VPNs, experiments are repeated by changing the network
emulator’s bandwidth as 10–100 [Mbit/s] and changing the
number of VPN flows as 2–100. Either one or two TCP flows
comprise each VPN flow. Regarding other parameters, values
in Tab. V are used.

First, the CPU time used by the ingress and egress PE
routers, when the number of VPN flows is fixed at 100 and the
network emulator’s bandwidth is changed, is shown in Fig. 12.
This figure shows that the total CPU time consumed by the
ingress and egress PE routers during 180 [s]. This figure shows
that the CPU time used by the ingress and egress PE routers
increase almost linearly to the bandwidth. For instance, the
CPU time used by the ingress PE router is 3.12 [s] when the
network emulator’s bandwidth is 100 [Mbit/s], although this
is approximately 1.73% when converted to CPU utilization.
Thus, bandwidth up to approximately 5,700 [Mbit/s] can be
supported using the devices used in experiments when there
are 100 VPN flows.

Next, the CPU time used by the ingress and egress PE
routers, when the network emulator’s bandwidth is fixed at
100 [Mbit/s] and the number of VPN flows is changed,
is shown in Fig. 13. The figure shows that the CPU time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

CP
U

Pr
oc

es
sin

g
Ti

m
e

[s]

Number of VPNs

Ingress PE router
Egress PE router

Fig. 13: Relation between the number of VPN flows and total
CPU processing time consumed by ingress/egress PE
router

used by the ingress PE routers slightly increase according
to the number of VPN flows, and that the CPU time used
by the egress routers are almost constant regardless of the
number of VPN flows. For instance, the CPU time used by
the ingress router when there are 100 VPN flows is 3.12 [s]
although this is approximately 1.73% when converted to CPU
utilization. Thus, up to approximately 16,000 VPN flows
can be supported when the bandwidth is 100 [Mbit/s] using
equipments/softwares used in our experiments.

Finally, the memory used by the ingress and egress PE
routers, when the network emulator’s bandwidth and the
number of VPN flows are changed, is shown in Fig. 14. One
can find that the memory used by the ingress and egress PE
routers is constant regardless of the bandwidth. This figure
shows that the memory used by the ingress PE router is
almost proportional to the number of VPN flows. In contrast,
the memory used by the egress PE router is almost constant
regardless of the number of VPN flows. This is because
most of the memory used is allocated as a buffer needed for
window flow control by the ingress PE router. For example,
the memory used by the ingress PE router is 19.5 [MByte]
and that used by the egress PE router is 1.55 [MByte] when
there are 100 VPN flows. Thus, up to approximately 1,300
VPN flows can be supported using the devices used in our
experiments.

V. CONCLUSION

This paper quantitatively evaluates the effectiveness of
I2VFC proposed in our previous work [4] through simulation
experiments and prototype system experiments. The results
demonstrated that (1) inter-VPN fairness can be achieved with
an extremely high accuracy regardless of settings of I2VFC
control parameters, (2) arbitrary fairness including the Max-
Min fairness can be achieved even in a network with multiple
bottleneck links, (3) congestion of the bottleneck link is
dispersed, and consequently fairness among TCP connections
(intra-VPN fairness) is improved, and (4) our I2VFC has a
practically sufficient scalability in terms of the transfer rate
and the number of VPNs accommodated.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

To
ta

l r
eq

uir
ed

 m
em

or
y [

M
by

te
]

Number of VPNs

Ingress PE router
Egress PE router

Fig. 14: Relation between the number of VPN flows and
memory usage in ingress/egress PE router

Our future work includes tuning of other control param-
eter; i.e., the management packet interval∆ for optimizing
the performance of I2VFC. Our future work also includes
investigation on effectiveness of I2VFC for multimedia traffic
such as VoIP and audio/video streaming.

REFERENCES

[1] B. Gleesonet al., “A framework for IP based virtual private networks,”
Request for Comments (RFC) 2764, Feb. 2000.

[2] M. Carugi and D. McDysan, “Service requirements for layer 3 provider-
provisioned virtual private networks (PPVPNs),”Request for Comments
(RFC) 4031, Apr. 2005.

[3] A. Nagarajan, “Generic requirement for provider-provisioned virtual
private networks (PPVPN),”Request for Comments (RFC) 3809, June
2004.

[4] O. Honda, H. Ohsaki, M. Imase, J. Murayama, and K. Matsuda,
“Scalable IP-VPN flow control mechanism supporting arbitrary fairness
criteria — part 1: Architecture design —,” inProceedings of Fourteenth
International Conference on Computer Communications and Networks
(ICCCN 2005), Oct. 2005, pp. 173–178.

[5] R. Callon and M. Suzuki, “A framework for layer 3 provider-provisioned
virtual private networks PPVPNs,”Request for Comments (RFC) 4110,
July 2005.

[6] I. Khalil and T. Braun, “Edge provisioning and fairness in VPN-DiffServ
networks,”JNSM, vol. 10, no. 1, pp. 11–38, Mar. 2002.

[7] A. Sang, H. Zhu, and S. qi Li, “Weighted fairness guarantee for scalable
diffserv assured forwarding,”Computer Communications Journal, vol. 8,
pp. 2365–2369, Mar. 2001.

[8] R. Pletka, A. Kind, M. Waldvogel, and S. Mannal, “Closed-loop
congestion control for mixed responsive and non-responsive traffic,” in
Proceedings of IEEE GLOBECOM 2003, Dec. 2003, pp. 4180–4186.

[9] H. T. Kung and S. Y. Wang, “TCP trunking: Design, implementation,
and performance,” inProceedings of IEEE International Conference on
Network Protocols ’99, Oct. 1999.

[10] D. Bertsekas and R. Gallager,Data Networks. Englewood Cliffs, New
Jersey: Prentice-Hall, 1987.

[11] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,”Computer
Networks and ISDN Systems, vol. 17, no. 1, pp. 1–14, June 1989.

[12] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, J. Jiang, and S.-C. Kim,
“Performance of TCP over ABR on ATM backbone and with various
VBR traffic patterns,” inProceedings of IEEE ICC ’97, June 1997.

[13] R. Jain,The Art of Computer Systems Performance Analysis. New
York: Wiley-Interscience, Apr. 1991.

[14] Opnet Technologies, Inc., “OPNET,” http://www.opnet.com/.
[15] “The TCP/UDP bandwidth measurement tool,” http://dast.nlanr.net/

Projects/Iperf/.
[16] L. Rizzo, “Dummynet: a simple approach to the evaluation of network

protocols,”ACM Computer Communication Review, vol. 27, no. 1, pp.
31–41, Jan. 1997.

